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Summary 

 

The challenges for long-span bridges such as stay cable or suspended bridges with high pylons and 

slender steel or concrete decks, are mainly related to optimizing the stressing sequence of the cables, 

to the geometrically non-linear behaviour of the structure, and to dynamic problems such as wind-

induced vibrations. 

 

Referring to geometric non-linearity, we realise, that using the linear elastic theory is mostly sufficient 

for small and medium size bridges. The accuracy of the linear results is usually adequate, since non-

linearity effects are small and can be accounted for by safety factors or even be ignored. Some non-

linearity effects can – if required – also be locally taken into account in post-processing (design check) 

procedures. However, when analysing long-span bridges, especially cable suspended bridges, non-

linearity effects often reach magnitudes, which cannot be neglected in the structural analysis. 

 

This paper presents the findings of a research project investigating the wind impact. Long-span 

bridges require sophisticated wind buffeting analyses with considering both, the aero-elastic behavior 

of the structure and the wind loading correlation. 

 

Further, this article deals with the application of Computational Fluid Dynamics (CFD) Methods for 

static and dynamic wind-effect analysis. The main attention will be paid to the consideration of  

suspension bridges with long spans, because they are very susceptible for wind induced oscillations. 

We will go into Discrete Vortex Method (DVM) for determination of the aerodynamic features more 

into detail.  

 

The theoretical background is outlined and the implementation into the bridge design software is 

briefly described. A practical application example illustrates the described principles. 
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1 INTRODUCTION 

As a matter of fact, a very long span length results in a more flexible structural system, which makes 

the complicated static as well as dynamic behaviour. Of course, excessive deflections and vibrations 

due to strong wind may occur. 

 

Upgraded construction methods and novel materials allow increasingly bridge construction with 

extraordinary long spans. Contemporaneously the height to width proportion of the main girder cross 

section can be reduced more and more – at least considering only static requirements. However, the 

construction becomes more susceptible for wind induced oscillations and instabilities. Therefore 

increased attention must be paid to the bridge-wind interaction during the planning process in order to 

ensure stability at local design wind velocities. 

 

 Wind tunnel measurements have been proved to be a very credible method for examination of 

these interactions during the planning process. However two problems arise which should not be 

disregarded. On the one hand these measurements cause high expenses and on the other hand it comes 

to time delay in the planning process because they are usually not performed in-house of design 

companies. 

 

 For this reasons Computational Wind Engineering (CWE), which is performed as preparation 

or simultaneously to wind tunnel measurements, is becoming more and more a method of choice. The 

computer aided modelling provides generally the opportunity to calculate the influence of cross-

section modifications on the wind-bridge interaction fast and straightforward. By using adequate 

numerical and analytical models both steady state and dynamic wind loading can be calculated. In the 

present case a Discrete Vortex Method (DVM) serves to calculate the airflow around considered cross 

sections. Design checks and calculation of critical velocities are performed for classical flutter, one-

dimensional torsional flutter, across wind oscillation and torsional divergence. 

 

 As method of choice DVM is implemented for resolving the Navier-Stokes equations, dealing  

with the aerodynamic coefficients which are essential for the design checks. Finally, practical  

examples are discussed. 

 

During the design process the engineer is looking for the best solution for given criteria by changing 

specific system parameters. Engineering experience helps to reduce the time required, but there will 

still be a need for many iteration steps until the design criteria are met. Computer programs nowadays 

should provide the best possible support for this design process. 

 

Figure 1: Target bending moment at the final stage should be achieved with construction sequence. 

The construction sequence combined with long-term effects has an influence on the target engineering 

design. Within structural analyses it is necessary to account for long-term effects in the calculation and 

to minimize undesired influences. 

 



  

The determination of the structural eigenmodes and eigenvalues under the current total loading in the 

displaced structural shape is an important step in the bridge design process. Because of the flexible 

structural system all computations are based on the tangential stiffness of the structure at a given point 

in time – the structure under permanent loading and mean wind – allowing for including all prior non-

linear effects. The usage of the structural “tangent stiffness” results in the best possible linearization 

for the subsequent dynamic analysis steps in the frequency domain. 

2 Discrete Vortex Method 

The Navier-Stokes equations for incompressible fluids of constant density  and temperature provide a 

basis for the numerical treatment of the air flow. By taking the curl, the so-called vorticity transport 

equation (VTE) is obtained, which reads for two-dimensional cross sections: 
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Here, the vorticity  is the curl of the velocity u and  denotes the kinematic viscosity of air. The 

vortex field  is approximated by a large number of vortex particles of given circulation i and size  

located at xi: 
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The perimeter of the cross section is divided into a given number of straight boundary elements along 

which either vanishing tangential velocity (no-slip) or vanishing normal velocity (no-penetration) is 

demanded. To resolve the boundary conditions, the vorticity field at the perimeter is modelled by a 

surface circulation which varies linearly along the surface panels. The solution is made unique by 

imposing conservation of total circulation. 

 A numerical solution to the VTE is obtained by applying a fractional step method to the 

convection term (second term on left hand side) and diffusion term (right hand side). The convection 

term is treated either with forward Euler differencing or second order Runge-Kutta. The velocity is 

recovered from the vorticity with the Biot-Savart relation 
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where the oncoming velocity is given by U. Diffusion is treated by a random walk method. 

 The application of DVM in bridge engineering was expatiated e.g. by Morgenthal (2002) und 

Walther (1994). 

3 AERODYNAMIC COEFFICIENTS 

3.1 Steady State Coefficients  

 



  

A dimensional analysis of the VTE (1) shows that there exists an unique solution for all flows which 

are characterized by the same Reynolds number 
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where,   is a typical length scale for the considered cross-section. This fact is used advantageously for 

wind tunnel experiments where scale models of the cross section are examined. The forces measured 

for the considered models can be renormalized to obtain the forces on the bridge.  

 In order to calculate the static wind load, the dimensionless steady state coefficients CD, CL and 

CM are considered. They are given as ratio of wind load and force due to dynamic pressure: 
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The drag force D acts along the wind direction while L denotes the lateral lift force normal to the wind 

direction. The overturning moment is given by M. The mass density of air is described by Normally 

the normalization lengths  D and  L are equal to the height H and width B of the cross section. The 

moment coefficient is usually normalized with A = B². 

 The dominant frequency of vortex separation at the cross section is expressed by the 

dimensionless Strouhal number St. Normally this frequency is equal to the frequency at which 

alternating across wind forces act on the cross section. The Strouhal number is given by  
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where f denotes the frequency and  St is the normalization length which equals the height H of the 

cross section in most cases. 

 

3.2 Flutter Derivatives 

 

Classical flutter is a wind induced oscillation with two degrees of freedom. In this case the equations 

of motion which govern vertical deviation h and torsional deviation  must be considered as a coupled 

system. Theodorsen developed a complete analytic theory for the special terms that dominate in 

aircraft construction. For bridge deck cross sections Simiu (1996) proposes a linearization of the 

aerodynamic forces by means of the aeroelastic coefficients or flutter derivatives Hi
* 
and Ai

*
, i = 1,...,4: 
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In the equations above the dynamic lift and moment 

must be considered as additional contribution next to steady 

state forces. Normalization is in analogy to (5) and the 
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Figure 13:  Vertical and 

torsional displacement in 

classical flutter theory. 



  

oscillation frequency is expressed by the reduced frequency K = oscB/U. The flutter derivatives also 

depend on frequency and are commonly expressed as function of the reduced velocity vr = 2/K. The 

definition of the vertical and torsional displacement h and  is shown in figure 1. For reasons of 

consistency with the Theodorsen theory, vertical displacement and force are often given with positive 

sign downwards. In some cases a factor 2 is used additionally on the right hand side of the calculation. 

 To determine the flutter derivatives with CFD two 

separate calculations are performed. Once a forced vertical oscillation of the cross section is 

considered and once a torsional oscillation with the axes normal to the cross section plane. In both 

cases lift force and moment can be expected to oscillate with the same frequency as the cross section 

with a certain phase shift. With the obtained phase shifts and oscillation amplitudes the flutter 

derivatives can be obtained from the model equations (7) and (8), cf. Larsen (1998). For wind tunnel 

measurements an elastically suspended model is examined. For a proper scaling of the extracted 

dynamic coefficients 15 similarity parameters must be matched instead of the single Reynolds number 

in the steady state case. A short abstract of the procedure can be found for example in Lechner (2006). 

 

4 Design Checks 

 

4.1 Galloping 

 

Galloping is a self-excited oscillation of the cross section in across wind direction due to alternating 

lateral forces. According to Simiu (1996), a necessary condition for galloping is the so-called Glauert-

Den Hartog criterion 
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which is valid as long as drag and lift coefficients are normalized with the same length scale  D  =  L. 

In the more general case with different length scales the criterion must be modified accordingly to 
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4.2 Torsional Divergence 

 

For slender cross sections as those of bridge girders, the overturning moment due to wind increases in 

general with increasing wind attack angle. If the torsional stiffness is weak it might be not possible to 

find a stable equilibrium solution for the torsional displacement. This phenomenon can be observed if 

the wind velocity is higher than the critical velocity 
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Here k denotes the torsional stiffness and A the normalization area of the moment coefficient CM. 

Normally one considers the lowest eigen-frequency f in practice so that the torsional stiffness can be 

expressed by the generalised moment of inertia I as ka = I ², where   = 2f is the circular 

frequency associated with the eigen-frequency. 



  

 

4.3 Classical Flutter 

 

Classical flutter is a coupling of vertical and torsional oscillation. Consequently, one searches for 

harmonic solutions of the system 
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The vertical and torsional displacement, respectively, are given by h and  and the corresponding 

circular frequency and critical damping is denoted by  and . If the centre of mass and shear centre 

do not coincided, also the eccentricity a and radius of gyrations rg must be given. The aerodynamic 

forces Lh and Ma can be obtained from the flutter derivatives according to equations (7) and (8). 

 By assuming harmonic oscillations as solution of (12) a system of equations for the amplitudes h0 

and 0 is obtained. The system is only solvable if the determinant of the coefficient matrix vanishes. 

For the assumed type of solution the determinant is a complex valued polynomial of fourth order in the 

unknown flutter frequency Since the frequency must be real valued for harmonic oscillation the 

polynomial can be decomposed into two real valued polynomials. Simultaneous solutions to these 

polynomials can only be found for certain critical velocities Uc,2dof. A detailed derivation for the 

evaluation of the critical velocity is described in Walter (1994) and Simiu (1996). 

 

4.4  Torsional Flutter 

 

If  the flutter derivative A2
*
 exposes a pronounced change of sign a pure torsional oscillation becomes 

possible as pointed out by Simiu (1996). Since A2
* 

can also be interpreted as additional damping a 

vanishing total damping can occur if A2
*  

is positive. In this case a necessary condition for torsional 

flutter can be derived from the second equation of motion (12): 

 

2

*

2

4

FA

I
A



   (13) 

 

From the critical value of A2
*
 a critical for the reduced velocity can be deduced, and with the given 

eigen-frequency, a critical velocity can be calculated. 

4.5 Wind-induced vibration of the whole bridge 

 

It is natural that wind load effects are getting bigger on the design of a cable-stayed bridge with its 

longer span lengths. The wind vibrations are conventionally classified into buffeting (gust response), 

vortex excitations, galloping and torsional flutter of the whole bridge. 

 

Wind induced vibrations are to  be verified also for various stages during the erection as well as, for 

such structural elements as pylon and stay cables, after completion. 



  

 

The buffeting of a structure always takes place in the direct effects of turbulent natural wind. In the 

case of a long span bridge exposed to wind, there will be random vibrations of lateral bending by drag, 

vertical bending by lift and torsion around the bridge axis by pitching moment. 

 

Referring to wind impact, long-span bridges require sophisticated wind buffeting analyses with 

considering both, the aero-elastic behavior of the structure and the wind loading correlation. 

 

There are numerous assumptions that should be considered in order to deduce mathematical models for 

the fluid-structure interaction problem. For the analysis of bridges they are well established and the 

most important ones for the present aims can be listed as follows: 

 

a) For the superposition principle of aerodynamic forces to hold, vibration amplitudes of a bridge 

deck are assumed to be small (lower than ±3 Deg in torsion, say). 

b) The aeroelastic loads and the associated flutter derivatives are assumed to be functions of the 

mean reduced frequency and static twisting angle of the deck. The spanwise correlation of 

aeroelastic loads is assumed to be perfect. 

c) The aerodynamic strip hypothesis is valid, i.e. the aerodynamic forces acting on a deck section 

(strip) are not influenced by the flow conditions at the strip vicinity. 

d) The spatial correlation of fluid velocity fluctuations and the buffeting load they induce are 

considered to be identical. 

e) The dynamical system is representable by means of the linear equations of motion around the 

equilibrium position. The equilibrium position is dependent upon the mean wind velocity. 

f) Winds considered are assumed to be strong, the mean values of order 10 m/s or higher, for the 

referred turbulence models to be valid. 

g) The buffeting excitation is assumed to be a stationary ergodic random process, i.e. the 

conditions of rapid change at mean wind velocity (rising and settling phases of storms) are not 

considered. 

h) The horizontal across-wind component of turbulence spectrum S (n) is assumed to have 

unimportant effects on the structural response and is neglected for the computational efficiency. 

i) Lateral wind velocity components perpendicular to bridge spans are assumed to produce 

dominant wind actions to bridge decks. 

 

Generally, none of the assumptions mentioned above are found to be restrictive in the sense, that they 

should be relaxed in analysis of typical long-span bridges, with expectations: 

j) In the analysis of a bridge construction stage, the strip hypothesis may yield error, if the effects 

of the finite aspect ratio of the girder are not accounted for. 

k) Winds parallel to bridge span can cause notable buffeting during the cantilever construction of 

cable-stayed bridges. 

l) Conservative models for coherence decay characteristics can be assumed to account for a 

possible increase of load correlation vs. fluctuation velocity correlations. 

 

The assumptions are not intended to be fully accepted in all cases, but in the present development it is 

believed that their implications are small or negligible in comparison to uncertainties in the structural 

and aerodynamic data. 

 

The presented solution for structural wind buffeting calculation is performed in the modal space and in 

the frequency domain. It includes aerodynamic damping and stiffness effects due to structural 

movement caused by the wind flow. All computations are based on the tangential stiffness of the 



  

structure at a given point in time – the structure under permanent loading and mean wind – allowing to 

include all prior non-linear effects.  
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Figure 2: Wind forces acting on the bridge section. 

 

This calculation is commonly performed in the modal space, presuming linear behaviour based on the 

tangential stiffness matrix attained in a previous fully non-linear analysis for the dead loads. It includes 

aerodynamic damping and stiffness effects due to the structural movement caused by the wind flow. 

The analysis is based on the wind profile and on the aero-elastic parameters of the cross-sections (drag, 

lift, moment coefficients and derivatives). The wind profile is characterised by the mean wind velocity 

and the fluctuation (turbulence) velocity, both being a function of the height above terrain level. The 

stochastic is accounted for by using power spectra in the frequency domain. 

 

These aerodynamic coefficiants leed into curves for Drag, Momentum and Lift. 

 

 

 

 



  

 

Note: In case of a deck girder a range of this angle α between –10° and +10° is of interest. For 

pylons and piers this range might be from 0° to 360°, but symmetric conditions are often 

helpful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The aerodynamic forces per unit length are: 

 

Drag:  qy = 0.5CDtV
2
 

Lift:  qz = 0.5CLBV
2
 

Moment: M = 0.5CMB
2
V

2
 

 

There CD, CL, CM are shape factors for drag, lift and overturning moment. 

 

The relation between “Autocorrelation function” and “Power Spectral Density” is a basic equation of 

the solution in the modal domain. 
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5 GREAT BELT BRIDGE 

 

The cross section of the Great Belt (Storebœlt) bridge, a suspension bridge with a span of 1624 m in 

Denmark, is a well documented example in the CFD literature (e.g. Larsen, 1994 and Morgenthal, 

2000). A schema of the cross section with width B = 31 m and height H = 4.34 is shown in figure 2. 

Since Reynolds numbers are only accessible up to 10
5
 in the wind channel the CFD calculations were 

performed for the same Reynolds number for comparison. The structural data for wind design checks 

are given in table 1 (cf. Walther, 1994).   

 

 
 

Figure 14: Schema of the Great Belt bridge main girder cross section. The green marks  the shear 

centre. 

 m I fh f 

[kg/m³] [kg/m] [kg m] [Hz] [Hz] 

1.2 17.8 · 10
6 

2.173· 10
8
 0.099 0.186 

 

Table 1:  Structural data for the wind design checks of the Storebœlt bridge. 

 

 The results of the steady state coefficient calculation are illustrated in figure 3. A comparison 

with Walther (1994) and Morgenthal (2002) shows a good agreement of the coefficients. The Strouhal 

number for horizontal wind direction is St = 0.12. This is in good accordance with the values found in 

literature which are between 0.08 and 0.25 (cf. Morgenthal, 2000). By inspecting the dependence of 

the lift coefficient on the wind direction, a positive slope is found for angles between –10° and +8°. 

Therefore, no galloping is expected for these angles. For the remaining region up to +10° the 

criterion (10) predicts no susceptibility for galloping.  
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Figure 15:  Steady state coefficients CD (blue), CL (red) and CM (green) of Storebœlt bridge deck in 

dependence of wind direction. For comparison with the present results (o), results obtained by Walther 

(1994, x), Morgenthal (2002, ) and Reinhold (1992, +) are given. 

 

 To calculate the critical velocity for torsional divergence, the derivative of the moment 

coefficient is approximated by 
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Inserting this value into equation (11) the critical velocity is Uc,div = 65.5 m/s.  

 The flutter derivatives were calculated according to the procedure presented in section 3.2. The 

results are shown in figure 4 together with comparison results from another DVM calculation (Larsen, 

1994). Please note that the present results were multiplied with a factor 0.5 for comparison reasons. 

Again a good compliance is reached. 

 The critical classical flutter velocity for zero critical damping h  = 0 calculates to 

Uc,2dof  = 41.8 m/s according to the method outlined in section 4.3. Reinhold (1992) obtained a value 

Uc,2dof  = 37.6 m/s with wind tunnel measurements. If the critical damping is raised to 0.5% the critical 

velocity is slightly increased to Uc,2dof  = 43.0 m/s. 

 By inspecting the dependence of the coefficient A2
*
 on the reduced velocity it can be seen that 

there is no susceptibility to torsional flutter since the effective damping remains positive for all wind 

velocities.  
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Figure 16:  Flutter derivatives H1*, A1* (blue), H2*, A2* (green), H3*, A3* (red) and H4*, A4* (magenta) 

in dependence of the reduced velocity vr. For comparison with the used DVM (o) results obtained by 

Walther () are given. 

 

The time history of the lift coefficient is demonstrated in figure 5 for different situations: once for a 

fixed cross section and once for a cross section which performs a forced vertical oscillation with vr = 4. 

After a certain settling time the time history for the fixed cross section can be modelled by a harmonic 

oscillation where the frequency is determined by the Strouhal number. The same frequency can be 

identified in the time history of the moving cross section but it is superimposed with an oscillation 

with the driving frequency. The amplitude and phase shift is used to calculate the flutter derivatives 

H1* and H4* according to (7). 
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Figure 17:  Time history of the lift coefficient CL in dependence of the dimensionless time t* for fixed 

cross section (blue) and vertically oscillating cross section (red). The green line indicates the vertical 

displacement h of the cross section. 

6 STONECUTTERS BRIDGE, HONG KONG 

 

 



  

The Stonecutters Bridge is a cable-stayed bridge with a main span of 1018 m, side spans of 298 m, and 

two single towers of a height of 290 m. The bridge will straddle the Rambler Channel at the entrance 

to the busy Kwai Chung container port and its northern end will be located on reclaimed land that 

forms part of Container Terminal 8 at the eastern side of Stonecutters Island. 
 

The deck of the main span is a twin girder steel deck, whilst the side spans are concrete; the side spans 

will be built in advance of the cable stay erection to counterbalance and stabilise the slender 

lightweight main span deck. 

           Figure 3: Structural RM2006 model. 

 

Prefabricated cable stays are arranged in a laterally-inclined fan arrangement to maximise the 

transverse and torsional stability of the main span. They include the world„s longest bridge stay to date. 

Prefabricated cable stays are arranged in a laterally inclined fan arrangement to maximise the 

transverse and torsional stability of the main span and include the world„s longest bridge stay to date. 

Wind buffeting responses are shown in Figure 4 to Figure 6.  
 

 

Figure 4: Tower bending moment. 

 

Figure 5: Deck bending moment. 

 

Figure 6: Deck normal force. 

7 SHENZHEN WESTERN CORRIDOR 

 

On the Hong-Kong side of the Shenzhen Western Corridor (Project Engineers: Ove-Arup, Hong-Kong) 

there is a cable stayed bridge with a main span of 210 m. The steel girder is supported by an inclined 

pylon of a height of 158 m. 

The wind buffeting responses are shown in .    Figure 8 to .   Figure 10.

 
 



  

  
 

Figure 7: Structural RM2006 model.    Figure 8: Lateral bending moment. 

 

 

   

Figure 9: Vertical bending moment.   Figure 10: Normal force. 

 

8 CONCLUSION  

 

The presented results show good compliance with other publications both of theoretical and practical 

nature. The calculation time for the considered example was less than three hours with two Dual-Core 

processors at 2.67 GHz. With regard to the design time the computer aided calculation of wind effects 

can be regarded as a powerful tool in early design stages. Different cross sections and modifications of 

details can be examined fast and uncomplicated with good accuracy. 

 

 In the final design phase computer based calculations can be combined with wind tunnel 

measurements to guarantee optimal safety in the wind design process.  

 

The numerical procedure outlined in this paper is implemented in the computer package RM2006. The 

presented algorithm predict wind buffeting response within structural non-linear analysis. Cable 

sagging, p-delta effects, large displacements or even contact problems can be combined with long term 

effects within consistent analysis. The proposed method for the numerical analysis can handle 

satisfactorily static and dynamic bridge behaviour up to the time infinity; it is generally suitable for the 

investigation of cable stayed bridges.  
 

The wind related functions of RM2006 match nearly all needs for the design of long-span bridges. 

Arbitrary complicated wind profiles with varying wind speed and turbulence intensity are easily 

defined. Together with the cross-section related shape factor diagrams defining the dependency of the 

drag- lift- and moment coefficients on the attack angle of the wind impact, these wind profiles allow a 

comprehensive wind buffeting analysis taking into account the varying along-wind and lateral forces 

of gusty wind events. 
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